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Abstract. Perturbations are ubiquitous in metabolism. A central tool to understand
and control their influence on metabolic networks is sensitivity analysis, which investi-
gates how the network responds to external perturbations. We follow here a structural
approach: the analysis is based on the network stoichiometry only and it does not
require any quantitative knowledge of the reaction rates. We consider perturbations
of reaction rates and metabolite concentrations, at equilibrium, and we investigate the
responses in the network.
For general metabolic systems, this paper focuses on the sign of the responses, i.e.
whether a response is positive, negative or whether its sign depends on the parame-
ters of the system. In particular, we identify and describe the subnetworks that are
the main players in the sign description. These subnetworks are associated to certain
kernel vectors of the stoichiometric matrix and are thus independent from the chosen
kinetics.
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1. Introduction

A typical problem in biological networks is to understand how such systems respond to
perturbations. Perturbations may be induced both by environmental as well as genetic
agents, and the interest is at least twofold. Firstly, it is of interest investigating the
robustness of a system, that is, the maintenance of certain dynamical properties under
the effect of external perturbations. Secondly, and quite on the contrary, it is of inter-
est developing strategies to influence and control such dynamical properties by precise
targeted perturbations, as many medical and pharmacological applications are based on
related concepts [1, 2].
Control of living matters is a very delicate task. Firstly, it is very difficult to carry out
a perturbation in such fragile context, even more if a perturbation must be targeted
to a single network component. An interesting method of metabolism perturbation is
studied in the fundamental contribution [3] by Ishii et al, where the authors perform
enzyme knock-out experiments on the central glucose metabolism of Escherichia Coli.
Via a genetic modification of the cell’s DNA, the gene responsible for producing an en-
zyme catalyzing a certain reaction j∗ is removed, so that the rate of the reaction j∗ is
decreased. The responses in the network, obtained experimentally, showed an intriguing
pattern feature: many components of the network did not respond, at all, and many
others showed intercorrelated responses. A second more general mathematical difficulty
is the lack of precise and reliable quantitative values, as measurements are often very
difficult in applications. A possibility to overcome such intrinsic difficulty is the employ-
ment of qualitative approaches rather than quantitative numerical simulations based on
uncertain parameters. This raises the mathematical question, whether the signs of the
responses can be understood by the structure of the network, alone. The goal of this
paper is to identify the network structures encoding the responses and thus possibly ex-
plaining the arising of the patterns. More specifically, some of the questions this paper
deals with are:

(1) Which reaction j∗ must be perturbed to influence the flux of a reaction j′?
(2) To reach a positive influence, which should be the sign of the perturbation?
(3) For a fixed perturbation, can the sign of the influence be controlled via a careful

choice of the reaction rate parameters?

In a dynamical systems context, as it is of interest of the present contribution, the
following system of Ordinary Differential Equations (ODE) is typically considered:

(1) ẋ = f(x) ∶= Sr(x),
where x ≥ 0 is the vector of the concentrations of chemicals or metabolites, S is the
stoichiometric matrix, and r(x) is the vector of the reaction rates (kinetics). Let us
consider a network at a positive equilibrium x̄ > 0:

(2) 0 = f(x̄).
To include external perturbations, a further ε-dependence is added:

(3) 0 = f(x̄, ε),
where the perturbation ε ≥ 0 may as well be interpreted as a control term. Assume that
there exists a positive equilibrium x̄(ε) > 0 for ε in a neighborhood of 0. The central
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object of sensitivity analysis are the partial derivatives of the responsive components
with respect to ε, at ε = 0. The concentrations of metabolites and the reaction fluxes
are natural responsive components to be considered in a metabolic network case. The
concentration response of metabolite m′ to an ε-perturbation is defined as

(4) δxm′ ∶=
∂x̄m′(ε)
∂ε

∣
ε=0
,

and the flux response of reaction j′ to an ε-perturbation is

(5) Φj′ ∶=
∂rj′(x̄(ε))

∂ε
∣
ε=0
.

Our results focus on metabolic networks as intended applications. Mathematically, equa-
tions like (1) model also more general chemical reaction networks and even ecological
and epidemiological systems. However, the choice of the class of functions r and of
the stoichiometric matrix S may be very different. In the frame of ecology, for exam-
ple, [4, 5] studied a sensitivity matrix for ‘food webs’ and ‘flow networks‘. In the frame
of chemistry, several types of sensitivity analysis have been investigated, following both
local and global approaches. We refer to the survey paper [6] for an overview of these
methods and more detailed references. In an ODE context, Shinar and Feinberg investi-
gated a property called absolute concentration robustness (ACR) [7–9]. In the authors’
words [9], “a model biochemical system has ACR relative to a particular bio-active
molecular species if [...] the concentration of that species is the same in all of the posi-
tive steady states that the system might admit, regardless of the overall supplies of the
various network constituents”. ACR may indicate zero sensitivity of the concentration
of a certain species with respect to the other network components. However, the precise
mathematical connections between ACR and zero sensitivity are still to be investigated.
For a first few attempts to establish such a bridge, see [10,11]. Moreover, in [12] Shinar
and co-authors were able to derive quantitative bounds on the entries of the sensitivity
matrix for reaction fluxes, in a mass-action kinetics context and for a regular class of
networks. To our knowledge, only few contributions further address the signs of the
sensitivity responses [13–15].

With a focus on metabolism and on gene knock-out experiments studied in [3], Fiedler
and Mochizuki [16,17] started a structural sensitivity analysis of equilibria. This body of
work has subsequently been enlarged by further contributions [18–21]. Knock-out exper-
iments forbid the production of an enzyme, perturbing thus the rate of the corresponding
reaction. Consequently the following reaction perturbation was considered:

(6) 0 = f(x̄, ε) = Srε(x̄),

where rε(x) = (1 + εej∗)r(x) and ej∗ is the j∗-th unit vector in RN . (6) models a
targeted perturbation of the single rate of reaction j∗. Without specifying the kinetics,
only algebraic relations between network components can be addressed. The responses
(4) and (5) have been termed algebraically nonzero, if they are non identically zero upon
differentiation. An algebraically nonzero response of an element p′, either a metabolite
m′ or a reaction j′, to a perturbation of j∗ has been called nonzero influence of j∗ on
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p′, and denoted with the notation:

j∗ ↝ p′.

Moreover, [18] proved transitivity of reaction influence:

j1 ↝ j2 ↝ j3 ⇒ j1 ↝ j3.

This paper addresses for the first time in this metabolic context the question on the sign
of the responses. For a reaction perturbation of a single reaction j∗, at equilibrium, we
ask

What is the sign of the responses?

We focus on flux responses Φ, for mathematical reasons: following our approach, treat-
ing flux responses is less technical and more intuitive, so that it is preferable as a first
exposition to the topic. We have thus omitted a full analysis of the metabolite responses
δx for concision and clarity of presentation. For an attempt to the sign-analysis of δx
along the lines of the present paper, see the dissertation [22].

A central concept in our approach are the Child Selections. A Child Selection J is an
injective map associating to each metabolite m a reaction j, in which the metabolite m
participates as input reactant, see Definition 1 below. In particular, a Child Selection
identifies reshuffled square minors SJ of the stoichiometric matrix S, such that the ith

column of SJ is the J(mi) column of S. These minors play a crucial role in the structural
description of the nonzero response.

Let rjm indicate the partial derivative of the jth reaction rate rj with respect to the

concentration of the mth metabolite, i.e., rjm ∶= ∂rj(x)
∂xm

. Introduced in [18], the formula

for the flux response (Φ)j
∗

j′ of reaction j′ to a reaction perturbation of j∗ ≠ j′ reads

(7) detSR ⋅ (Φ)j
∗

j′ = ∑
j∗/∈J∋j′

(ϕJ)j
∗

j′ ,

where the square matrix SR is the Jacobian matrix of the system (1), J are Child Se-

lections, and (ϕJ)j
∗

j′ are multilinear homogeneous monomials in the variables rjm with a

coefficient that depends on certain minors of the stoichiometric matrix S, identified via
J, see (31) below. Hence, any response can be expressed as a rational function and the

sign of the flux response (Φ)j
∗

j′ depends both on the sign of the Jacobian determinant

detSR and on the sign of each response summand (ϕJ)j
∗

j′ . Since a structural analysis

of the sign of the Jacobian detSR has already been done in [23], in the present paper

we address the sign of the response summands (ϕJ)j
∗

j′ . With a natural monotonicity

assumption on the kinetics, i.e. rjm > 0, addressing the sign of (ϕJ)j
∗

j′ as a monomial of

the variables rjm means investigating the coefficient of such monomial.

The main tool in the analysis are the Enlarged Child Selections (ECS) J∪ j∗, for j∗ /∈ J.

An ECS naturally identifies anM×(M+1) matrix SJ∪j∗ , where j∗ is the columnM+1 and
the first M columns are identical to SJ. The two main results of this paper, contained
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in Section 4, fix a Child Selection J and describe the sign of (ϕJ)j
∗

j′ for any j′ ∈ J.

Specifically, Proposition 4.1 shows that the only relevant case is when the dimension
of the kernel of SJ∪j∗ is exactly one: trivial kernels are excluded by the dimension
M × (M + 1) of SJ∪j∗ and kernels of dimension bigger than one indicate zero response

summands (ϕJ)j
∗

j′ , for all j′. The analysis highlights in particular the important role

played by nonzero ECS kernel vectors 0 ≠ v ∈ RM+1,

(8) SJ∪j∗v = 0,

in the one-dimensional kernel situation, ker(SJ∪j∗) = span⟨v⟩. In this case,

The sign pattern of the entries vj holds the key to the sign pattern of the responses.

In fact, Theorem 4.2 states that nonzero response summands (ϕJ)j
∗

j′ ≠ 0 are characterized

by nonzero entries vj′ ≠ 0, and the mutual sign of the entries translates to the mutual
sign of the response summands. That is, for j′1 and j′2,

(9) sign((ϕJ)j
∗

j′1
(ϕJ)j

∗

j′2
) = sign(vj′1vj′2).

The determination of the absolute sign of each summand is then addressed in Theorem
4.3, requiring a bit of technicality for which we refer directly to Section 4.

As corollaries of the analysis, valuable qualitative considerations can be drawn. Firstly,
4.1 shows that if a metabolite m participates in only two reactions j1 and j2, then
the responses to a perturbation j1 are identical but opposite in sign to the responses
of a perturbation of j2. Secondly, 5.1 shows with a simple counterexample that no
sign-transitivity result holds, that is,

j1
+↝ j2

+↝ j3 /⇒ j1
+↝ j3,

or any other combination of sign. To our knowledge, it is the first time that this coun-
terintuitive feature of sign-sensitivity is described. Thirdly, 5.3 shows that it may be
possible, in (7), that the Jacobian detSR on the left hand side and the right hand side

∑j∗/∈J∋j′(ϕJ)j
∗

j′ share common polynomial factors.

The paper is organized as follows: the settings are presented in more detail in Section
2 (metabolic networks) and 3 (sensitivity). The main results are contained in Section
4. Section 5 presents four examples. Section 6 briefly discusses the case of metabolite
perturbation. Section 7 concludes with the discussion. All proofs are listed in 8.

2. Metabolic networks in mathematics

A metabolic network Γ is a pair {M,E}, where M is the set of metabolites and E is the
set of reactions. The cardinality of M is M , i.e., ∣M∣ =M and N is the cardinality of E,
i.e., ∣E∣ = N . In examples, we use capital letters A,B, ... for metabolites and numbers
1,2, ... for reactions. Letters m ∈ M and j ∈ E refers generically to metabolites and
reactions, respectively.
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A reaction j is an ordered association between two positive linear combinations of
metabolites:

(10) j ∶ sj1m1 + ... + sjMmM Ð→
j
s̃j1m1 + ... + s̃jMmM .

The nonnegative coefficients sj , s̃j are called stoichiometric coefficients. In metabolic
networks, these stoichiometric coefficients are integer and mostly 0 or 1. Mathematically,

there is no need to impose such restriction, and we can freely consider real sjm, s̃
j
m ∈ R≥0.

If a metabolite m appears at the left hand side of (10) with nonzero coefficient, then we
say that m is an input of reaction j. Conversely, if m appears on the right hand side
with nonzero coefficient, we call m an output of reaction j. Naturally, metabolic systems
are open systems, exchanging chemicals with the outside environment via inflows and
outflows. In this context, inflow reactions are then reactions with no inputs (sj = 0) and
outflow reactions are reactions with no outputs (s̃j = 0).

The M ×N stoichiometric matrix S encodes all the ordered stoichiometric coefficients:

(11) Smj ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−sjm for m input of j,

s̃jm for m output of j,

0 if m does not participate in reaction j.

Throughout this paper, we always use the notation Sj to refer to the column of the
stoichiometric matrix S associated to the reaction j. For example, in a network of four
metabolites {A,B,C,D}, an outflow reaction from metabolite A is represented as the
jth column of the stoichiometric matrix S as

(12) Sj =

j

⎛
⎜⎜
⎝

⎞
⎟⎟
⎠

A −1
B 0
C 0
D 0

.

Note that stoichiometric columns associated to inflow reactions always have only negative
entries. On the contrary, columns associated to inflow reactions have only positive
entries. With this construction a fixed order is assigned to each reaction. In particular,
we model a reversible reaction

(13) j ∶ A +B ←→
j

2C

simply as two irreversible reactions

(14) j1 ∶ A +B Ð→
j1

2C and j2 ∶ 2C Ð→
j2

A +B.

Let now x ≥ 0 be the M -vector of the concentrations of metabolites. Under the assump-
tion that the reactor is well-mixed, spatially homogeneous and isothermal, the dynamics
x(t) of the concentrations satisfy the following system of ODEs:

(15) ẋ = f(x) = Sr(x),
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where S is the M ×N stoichiometric matrix (11) and r(x) is the N -vector of the reaction
rates (kinetics). We do not require any specific form of such kinetics functions. We
consider the reaction rate of inflow ‘feed’ reactions jf , with no inputs at all, as constant,

(16) rjf (x) ≡Kjf .

For any other reaction j, rj(x) is a nonnegative and monotonically increasing C1 function
that depends only on the concentrations of those metabolites that are input to j:

(17)
∂r(x)
∂xm

≡ 0 ⇔ sjm = 0.

If the metabolite m is an input to the reaction j, the notation rjm indicates the positive
partial derivative

(18) rjm ∶= ∂rj(x)
∂xm

> 0.

The monotonicity restriction is indeed satisfied by most, but not all, chemical reaction
schemes. Without any constraints on the sign of rjm, we will not be able to predict the
sign of the responses, of course.

Many and fundamental questions have arisen in literature connected to the existence,
uniqueness, and stability of equilibria solutions x̄ of (15)

(19) 0 = f(x̄) = Sr(x̄),
for which we refer to the comprehensive book of Martin Feinberg [24]. In this paper, we
assume a priori the existence of a positive equilibrium x̄ > 0 of (19), but we require neither
its uniqueness nor its stability. In our setting, the existence assumption characterizes
the stoichiometric matrix S possessing a positive flux kernel vector r. In particular, (19)
imposes linear constraints on the reaction rate functions. Note that these constraints
do not necessarily fix the precise value of an equilibrium x̄, and can be considered
posed a priori, so that the existence of an equilibrium is really an assumption on the
reaction rates r(x), only. However, the analysis in this paper is entirely based on the
derivatives rjm of the reaction rates, and we must issue a warning here: depending on
the parametric richness of the kinetics, i.e., which class of nonlinearities we consider,
the derivatives rjm may or may not be considered parametrically independent from each
other and from the linear constraints (19). For example, for polynomial mass action
kinetics, the value of rj(x) and rjm(x) are related, a priori, at any value x, and for any
j and m. In contrast, Michaelis-Menten kinetics possesses enough parametric freedom
to consider the partial derivatives rjm as positive parameters, independent from (19).
This argument is computed explicitly in [23] and we omit it here. We will address again
this topic in the discussion section 7.

3. Sensitivity setting

In this paper we focus on perturbations of the reaction rates at a positive equilibrium
x̄ > 0. We consider the following reaction-perturbed equation:

(20) 0 = f(x̄, ε) = Srε(x̄),
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where rε(x) = (1 + εej∗)r(x) and ej∗ is the j∗-th unit vector in RN . The perturbation
thus concerns the rate of the single reaction j∗. At ε = 0, the Jacobian of the system

is the matrix ∂f
∂x = SR, where S is again the stoichiometric matrix and R is the N ×M

matrix of the partial derivatives rjm,

(21) Rjm ∶= ∂

∂xm
rj(x) =

⎧⎪⎪⎨⎪⎪⎩

rjm if
∂rj(x)
∂xm

≠ 0

0 otherwise
.

Under the nondegeneracy assumption, assumed throughout,

(22) detSR ≠ 0,

the Implicit Function Theorem (IFT) guarantees the existence of a family of equilibria
solutions x̄(ε),
(23) Srε(x̄(ε)) = 0,

for ε in a neighborhood of zero. We refer to Section 7 for a discussion about the standing
assumption (22).

By differentiation of (23), with respect to ε, we obtain

(24) 0 = S(ej∗ +R
∂x̄(ε)
∂ε

).

The concentration response of metabolite m′ to a perturbation of reaction j∗ is defined
as

(25) δxj
∗

m′ ∶=
∂x̄m′(ε)
∂ε

∣
ε=0

= −[(SR)−1Sj∗]m′ ,

and the flux response of reaction j′ to a perturbation of reaction j∗ as

(26) Φj∗

j′ ∶=
∂rj(x̄(ε))

∂ε
∣
ε=0

= δj∗j′ + (Rδxj∗)j′ = δj∗j′ − [R(SR)−1Sj∗]j′ ,

where δj∗j′ is the Kronecker-delta. In vector notation, (24) is then the flux balance

(27) 0 = SΦj∗ ,

indicating that the flux responses are kernel vectors of the stoichiometric matrix S.
In [18], expressions (25) and (26) have been analyzed in terms of Child Selections, whose
definition we recall here:

Definition 1 (Child Selections). A Child Selection is an injective map J ∶ M Ð→ E,
which associates to every metabolite m ∈ M a reaction j ∈ E such that m is an input
metabolite of reaction j.

For simplicity of notation, j ∈ J indicates that the reaction j is in the image of the map
J(M). The Jacobian determinant of the system, detSR, can be expanded along Child
Selections (Proposition 2.1 of [23]) as:

(28) detSR =∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m,
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where SJ indicates the M ×M matrix whose mth column is the J(m)th column of S. The
sum runs over all possible Child Selections. Note that the existence of a Child Selection
J such that

det(SJ) ≠ 0,

characterizes detSR /≡ 0, as a function of the variables rjm. In this case, of course, detSR
may still be zero for certain values of rjm. On the other hand, detSR ≠ 0 necessarily

implies the existence of a Child Selection J with det(SJ) ≠ 0. In addition, possible zeros
of detSR may hint at saddle node bifurcations of equilibria leading to multistability
regions, so that it is of interest the sign of each coefficient detSJ, in order to detect or
exclude a priori the possibility of having a zero of detSR. This is the content of the
next definition.

Definition 2 (Child Selection behavior). Let J be a Child Selection. We define the
behavior coefficient β(J) as

(29) β(J) ∶= sign(detSJ).
Moreover, we say that J is good if β(J) = (−1)M ; J is bad if β(J) = (−1)M−1; J zero-
behaves if β(J) = 0.

Consider a metabolic network admitting a positive stable equilibrium for all reaction
rates. The Jacobian of such an equilibrium has either eigenvalues with negative real
part or pairs of purely imaginary eigenvalues that are complex conjugated. The sign of
a nonsingular Jacobian, then, is always

sign detSR = (−1)M ,
which is implied, via (28), if all nonzero-behaving Child Selections are good. This is why
the Child Selections with this sign have been named ‘good’. Conversely, a loss of stability
of an equilibrium, for example via a saddle node bifurcation, necessarily requires at least
one bad Child Selection. Note that a Child Selection naturally identifies a subnetwork
{M,J(M)} constituted by all the metabolites m ∈ M and the reactions j ∈ J. For a
given J, [23] contains a network characterization of the behavior coefficient β(J) based
on certain cycles in the network. As a consequence of the analysis, for example, certain
classes of Child Selections, combinatorially simple, are shown to be good; e.g. acyclic
Child Selections are always good.

In [18], a formula for the flux response (Φ)j
∗

j′ of reaction j′ to a reaction perturbation of

j∗ ≠ j′ was derived, in Child Selection terms:

(30) detSR ⋅ (Φ)j
∗

j′ = ∑
j∗/∈J∋j′

(ϕJ)j
∗

j′ ,

where

(31) (ϕJ)j
∗

j′ ∶= −detSJ∖j′∪j∗ ∏
m∈M

rJ(m)m.

In (30) the sum runs over all the Child Selections J selecting the responsive reaction j′

as image of one metabolite, but not selecting the perturbed reaction j∗. In (31), SJ∖j′∪j∗
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indicates the M ×M matrix obtained from SJ by replacing the stoichiometric column
Sj′ , associated to reaction j′, with the column Sj∗ , associated to reaction j∗.

Formula (30) implies that the sign of the response (Φ)j
∗

j′ depends on the sign of each

respond summand (φJ)j
∗

j′ and on the sign of the Jacobian determinant detSR. Both

(φJ)j
∗

j′ and detSR can be abstractly seen as multilinear homogenous polynomials in the

positive variables rjm: the response (Φ)j
∗

j′ is thus a rational function of such variables.

Consequently, the last definition is concerned with the dependence of the sign of (Φ)j
∗

j′

on the values of the positive derivatives rjm.

Definition 3. A response (Φ)j
∗

j′ is called of determinate sign if its sign does not depend

on the values of the positive derivatives rjm. On the contrary, an indeterminate sign
response occurs when the sign does depend on the values of rjm.

Remark 1. Definition 3 is purely algebraic and it is based only on the network structure.
In particular, it is independent from the chosen kinetics and the value of the equilibrium
x̄. We discuss further in the discussion Section 7 how this definition plays a role in the
interpretation of the results.

4. Main results

We recall the Extended Child Selections J ∪ j∗ for j∗ /∈ J, and the notation SJ∪j∗ , indi-
cating the M × (M + 1) matrix possessing j∗ as the (M + 1)th column and the first M
columns identical to SJ. We are now ready to present the main results.

The first proposition provides a necessary condition for any nonzero response summand

(ϕJ)j
∗

j′ ≠ 0.

Proposition 4.1. For a response summand (ϕJ)j
∗

j′ , it holds:

(32) (ϕJ)j
∗

j′ = 0 for all j′ ⇔ dim(ker(SJ∪j∗)) > 1.

We now state the first main theorem, on the relative sign of the responses.

Theorem 4.2 (Relative sign of responses). Suppose dim(ker(SJ∪j∗))=1, and let kerSJ∪j∗ =
span⟨v⟩. Then,

(1) The response summand of reaction j′ is nonzero if and only if the j′-th entry of
v is nonzero, that is

(33) (ϕJ)j
∗

j′ ≠ 0 ⇔ vj′ ≠ 0.

(2) The mutual sign of the response summands of reactions j′1 and j′2 is given by the
mutual sign of the j′1-th and j′2-th entries of v, that is

(34) sign(ϕJ)j
∗

j′1
sign(ϕJ)j

∗

j′2
= sign(vj′1vj′2).
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To proceed towards the second result of the chapter, on the specific sign of each response,
we recall some linear algebra concepts, first, [25]. Let A be any M×M matrix with a one-
dimensional kernel. Straightforwardly, AT has one-dimensional kernel too. The cofactor
matrix C(A) of A is the matrix whose entries C(A)mj are given by

(35) C(A)mj = (−1)m+j det A∨j
∨m,

where A∨j
∨m indicates the (M − 1) × (M − 1) minor of A, obtained by removing row m

and column j. The adjugate matrix of A, Ad(A), is then defined as the transpose of the
cofactor matrix C(A) of A. That is,

(36) Ad(A) = C(A)T .
Moreover, we have the relation

(37) A Ad(A) = Ad(A)A = det A IdM = 0,

where IdM is the M ×M identity matrix. Let us fix a kernel vector v, which spans ker A.
Equalities (37) imply that there exists a kernel vector κ = κ(v) of AT , ker AT = span⟨κ⟩,
such that

(38) Ad(A) = v ⋅ κT .
In particular, any entry Ad(A)mj of the adjugate matrix can be expressed as:

(39) Ad(A)mj = (−1)m+j det A∨m
∨j = vm κj .

We are now ready to state the second main Theorem 4.3.

Theorem 4.3 (Absolute sign of responses). As in Theorem 4.2, let us suppose dim(ker(SJ∪j∗))=1,

and let kerSJ∪j∗ = span⟨v⟩. There are two cases:

(1) If the Child Selection J does not zero-behave, then the j∗-th entry of v is nonzero,
i.e. vj∗ ≠ 0, and

(40) sign(ϕJ)j
∗

j′ = β(J) sign(vj∗vj′).

(2) If the Child Selection J zero-behaves, then vj∗ = 0. In particular, consider ṽ ∈ RM

such that kerSJ = span⟨ṽ⟩ and ṽj = vj, for any j = 1, ...,M . For the unique kernel

vector κ of (SJ)T such that Ad(SJ) = ṽ ⋅ κT , we have

(41) sign(ϕJ)j
∗

j′ = − sign(vj′⟨κ,Sj∗⟩).

Remark 2 (self-influence). In analogy to (30), [18] provided also a formula for the case
of self-influence j′ = j∗. The formula reads

(42) detSR (Φ)j
∗

j∗ = ∑
J/∋j∗

(ϕ̃J)j
∗

j∗

where the response summands (ϕ̃J)j
∗

j∗ are

(43) (ϕ̃J)j
∗

j∗ = detSJ ∏
m∈M

rJ(m)m.
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From (42), it directly follows that Theorems 4.2 and 4.3 hold also for the case of self-
influence j′ = j∗. In particular, for this special case, we obtain that

(44) sign(ϕ̃J)j
∗

j∗ = β(J).
4.1. Twin sisters have opposite influence. As already noted in [18], (30) implies

that if a metabolite m∗ participates only in one reaction j∗, then any flux-response (Φ)j
∗

j′

to a reaction perturbation of j∗ is a priori zero, for any reaction j′: the formula requires
in particular the existence of a Child Selection J not selecting j∗. This interesting feature
has been named

Single children have no influence.

Here we add another take-home feature, in this flavor. Note that any ECS J∪j∗ contains
then at least two outgoing reactions from a metabolite m∗, one of which is j∗. We call
the reaction j∗s = J(m∗) a sister of j∗. Let now J and Js be two Child Selections such

that J(m) = Js(m) for any m ≠m∗, J(m∗) = j∗s and Js(m∗) = j∗. The matrix SJs∖j′∪j∗s
has opposite determinant to the matrix SJ∖j′∪j∗ . The two matrices are indeed obtainable
one from the other, via a single interchange of the columns Sj∗ and Sj∗s . The change of
sign in the determinant is a well-known property of a multilinear alternating form. This
implies, a priori, that

(45) sign(ϕJ)j
∗

j′ = − sign(ϕJs)j
∗

s
j′ .

Let us now further assume that any Child Selection J maps the metabolite m∗ either to a
reaction j∗ or a reaction j∗s , only. That is, any Child Selection J is such that J(m∗) = j∗
or J(m∗) = j∗s . In this case, the statement (45) can be strengthened to the following
proposition.

Proposition 4.4 (Twin sisters have opposite influence). Suppose that any Child Selec-
tion J maps the metabolite m∗ either to j∗ or to j∗s , only. Then

(46) rj∗m∗(Φ)j
∗

j′ = −rj∗sm∗(Φ)j
∗

s
j′ , for any j′.

In particular,

(47) sign(Φ)j
∗

j′ = − sign(Φ)j
∗

s
j′ , for any j′.

5. Examples

In this section we present four examples to illustrate our results and some consequences
of our analysis. To help visual intuition, we provide also a graphical representation,
where we consider the metabolites as vertices and the reactions as directed hyperar-
rows, inheriting the orientation from the reaction orientation (10). It is one common
representation, extensively used in chemistry, biology, and mathematics.

5.1. Failure of sign-transitivity of influence. di

Let j1, j2, j3 be three distinct reactions. The question of sign-transitivity asks whether
the sign of the influence j1 ↝ j3 follows from the signs of the influences j1 ↝ j2, and
j2 ↝ j3. In symbols,

j1
+↝ j2

+↝ j3
?Ô⇒ j1

+↝ j3,
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or any other combinations of signs. The following toy-model provides a first clear coun-
terexample to sign-transitivity, showing that sign-transitivity fails.

(48)

S =

f 1 2 3 4 5 6
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

A 1 −1 −1 0 0 0 0
B 0 1 0 −1 −1 0 0
C 0 0 1 1 0 −1 0
D 0 0 0 0 1 1 −1

.

The network (48) is monomolecular, that is, it is composed only by monomolecular
reactions j of the form

(49) j ∶ m1 Ð→
j
m2,

where a single metabolite m1 reacts to a single metabolite m2. As clarified in [23], one
of the features of monomolecular networks is that the nonsingular Jacobian determinant
is always of the ‘good’ sign

(50) sign(detSR) = (−1)M ,
and thus for Example (48), sign(detSR) = (−1)4 = 1.

The positive vector r = (3r,2r, r, r, r,2r,3r)T , r ∈ R>0, is one kernel vector of the stoichio-
metric matrix S, hence the associated dynamical system admits a positive equilibrium x̄
and we can perform our sensitivity analysis. We show in detail the following counterex-
ample to sign-transitivity:

(51) 1
+↝ 3

+↝ 5 but 1
−↝ 5.

Consider a perturbation of reaction 1. According to our Theorems, we have first to
find Child Selections J such that 1 /∈ J. There are two of such Child Selections, only,
depending on J(B):

(52)

⎧⎪⎪⎨⎪⎪⎩

J3 ∶= {J3(A) = 2;J3(B) = 3;J3(C) = 5;J3(D) = 6}
J4 ∶= {J4(A) = 2;J4(B) = 4;J4(C) = 5;J4(D) = 6}

For both Child Selections it holds:

(53) detSJi = 1, i = 3,4

Automatically, then, for both Extended Child Selections J3 ∪ 1 and J4 ∪ 1, we have that

(54) dim kerSJi∪1 = 1, i = 3,4,
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and thus Theorem 4.3, part 1, applies. Let

kerSJi∪1 = span⟨vJi⟩, i = 3,4.

We have that

(55) vJ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 w
2 −w
3 w
4 0
5 0
6 0

; vJ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 w
2 −w
3 0
4 w
5 −w
6 0

, for w ∈ R.

Since vJ3
1 vJ3

3 > 0 and vJ4
3 = 0, we obtain that the response of reaction 3 to a perturbation

of reaction 1 is positive:

(Φ)13 = (ϕJ3)13 + (ϕJ4)13 = (ϕJ3)13 > 0, that is 1
+↝ 3.

On the contrary, since vJ3
5 = 0 and vJ4

1 vJ4
5 < 0, we obtain that the response of reaction 5

to a perturbation of reaction 1 is negative:

(Φ)15 = (ϕJ3)15 + (ϕJ4)15 = (ϕJ4)15 < 0, that is 1
−↝ 5.

Now consider a perturbation of reaction 3. To check that (Φ)35 > 0, consider all Child
Selections J such that 3 /∈ J. Again, we have only two of those, depending on the image
of the metabolite A.

(56)

⎧⎪⎪⎨⎪⎪⎩

J1 ∶= {J1(A) = 1;J1(B) = 4;J1(C) = 5;J1(D) = 6}
J2 ∶= {J2(A) = 2;J2(B) = 4;J2(C) = 5;J2(D) = 6}

In complete analogy as above, for both Child Selections it holds:

(57) detSJi = 1, i = 1,2

Again, for both Extended Child Selections J1 ∪ 3 and J2 ∪ 3, we have that

(58) dim kerSJi∪3 = 1, i = 1,2,

and again Theorem 4.3, part 1, applies. Let

kerSJi∪3 = span⟨vJi⟩, i = 1,2.

Importantly note that for different Child Selections J1,J2, we have

(59) vJ1 = vJ2 , and vJi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0
2 0
3 w
4 −w
5 w
6 0

; for w ∈ R, i = 1,2.
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Since both vJ1
3 vJ1

5 > 0 and vJ2
3 vJ2

5 > 0, we obtain that the response of reaction 5 to a
perturbation of reaction 3 is positive:

(Φ)35 = (ϕJ1)35 + (ϕJ2)35 > 0, that is 3
+↝ 5.

In conclusion, we have showed (51). Other sign combinations follow in analogy. From
the same example:

2
−↝ 1

−↝ 5, 2
+↝ 5.

1
+↝ 4

−↝ 5, 1
−↝ 5,

1
+↝ 4

−↝ 3, 1
+↝ 3.

2
−↝ 1

+↝ 3, 2
−↝ 3.,

2
−↝ 3

+↝ 5, 2
+↝ 5.

All remaining possible cases, including indeterminate sign responses, are easily con-
structible with analogous new examples, and we omit them here.

5.2. The responses for a zero-behaving Child Selection. di

We exemplify Theorem 4.3, part 2, by considering a zero-behaving Child Selection J of
a non-specified network Γ of seven metabolites: m∗, A, B, C, D, E, F .

(60)

SJ =

J(m∗) J(A) J(B) J(C) J(D) J(E) J(F )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m∗ −1 0 0 0 0 0 0
A 0 −1 0 0 0 −1 0
B 0 1 −1 0 0 0 0
C 0 0 1 −1 0 0 0
D 0 0 −1 0 −1 0 0
E 0 0 0 0 1 −1 0
F 0 0 0 0 0 1 −1

, Sj∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m∗ −1
A 1
B 0
C 0
D 3
E 0
F 0

.

We study the response summands (ϕJ)j
∗

j′ of reactions j′ = J(A), J(B), J(C), J(D),
J(E), J(F ), to a perturbation of the dashed reaction j∗. They are summands in the
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responses Φj∗

j′ , for j′ = J(A), J(B), J(C), J(D), J(E), J(F ) respectively. Note that

the response summands relative to a Child Selection J are independent from the full
network Γ.

The matrix SJ is singular, and the vector v = (0,w,w,w,−w,−w,−w)T , w ∈ R, is a kernel
vector of SJ. Moreover,

(61) dim(kerSJ) = 1 and thus kerSJ = span⟨v⟩.

Now, the adjugate matrix Ad(SJ) is

(62) Ad(SJ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 0 0 0 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 1 1 0 −1 −1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0
0 −1 −1 0 1 1 0

,

and the choice κ = (0, 1
w ,

1
w ,0,−

1
w − 1

w ,0)
T of the kernel vector of (SJ)T satisfies

(63) v ⋅ κT = Ad(SJ).

For simplicity of computation, we can consider in particular the choice w = 1, so that
v = (0,1,1,1,−1,−1,−1)T and κ = (0,1,1,0,−1 − 1,0)T . Firstly we compute

(64) − ⟨κ,Sj∗⟩ = −1 ⋅ −2 = +2.

According to Theorem 4.3, the signs of the response summands (ϕJ)j
∗

j′ for j′ = J(A),
J(B), J(C), J(D), J(E), J(F ), are:

(65)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(ϕJ)j
∗

J(A) = sign(−⟨κ,Sj∗⟩ vJ(A)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j
∗

J(B) = sign(−⟨κ,Sj∗⟩ vJ(B)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j
∗

J(C) = sign(−⟨κ,Sj∗⟩ vJ(C)) = sign(+2 ⋅ 1) > 0.

sign(ϕJ)j
∗

J(D) = sign(−⟨κ,Sj∗⟩ vJ(D)) = sign(+2 ⋅ −1) < 0.

sign(ϕJ)j
∗

J(E) = sign(−⟨κ,Sj∗⟩ vJ(E)) = sign(+2 ⋅ −1) < 0.

sign(ϕJ)j
∗

J(F ) = sign(−⟨κ,Sj∗⟩ vJ(F )) = sign(+2 ⋅ −1) < 0.

5.3. Indeterminate sign Jacobian does not imply indeterminate sign response.
di
Definition 3 introduces the notion of determinacy for the response signs. Clearly, the
same definition identically applies to the Jacobian determinant detSR. In the context
of sensitivity analysis, a natural question arises for a Jacobian of indeterminate sign,
i.e., when sign detSR depends on the values of the derivatives rjm. The question asks

whether a Jacobian of indeterminate sign automatically implies that all responses (Φ)j
∗

j′
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are of indeterminate sign. In other words, for

(Φ)j
∗

j′ =
∑j∗/∈J∋j′(ϕJ)j

∗

j′

detSR
,

we ask whether we can exclude that the numerator and denominator switch sign at a
same shared root. The answer is negative, cancellations between numerator and denom-
inator may occur, and there may be determinate sign responses even in presence of an
indeterminate sign Jacobian. The following example has been intentionally designed to
illustrate such a case.

S =

1 2 3 4 5
⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦

A −1 −1 −1 0 1
B 0 1 1 −1 0
C 0 1 0 1 −1

,(66)

A positive kernel vector of S is r = (r, r, r,2r,3r)T , r ∈ R>0, hence the associated dynam-
ical system admits a positive equilibrium x̄ and the network suits our analysis. There
are three Child Selections.

(67)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J1 ∶= {J1(A) = 1;J1(B) = 4;J1(C) = 5}
J2 ∶= {J2(A) = 2;J2(B) = 4;J2(C) = 5}
J3 ∶= {J3(A) = 3;J3(B) = 4;J3(C) = 5}

The sign of the Jacobian determinant is indeterminate. Indeed,

detSR =∑
J

detSJ ∏
m∈M

rJ(m)m

=detSJ1 ∏
m∈M

rJ1(m)m + detSJ2 ∏
m∈M

rJ2(m)m + detSJ3 ∏
m∈M

rJ3(m)m

= − 1 ⋅ ∏
m∈M

rJ1(m)m + 1 ⋅ ∏
m∈M

rJ2(m)m + 0 ⋅ ∏
m∈M

rJ3(m)m

=(r2A − r1A)r4Br5C .

(68)

At the parameter value r1A = r2A, detSR switches sign. Via Formula (30), the flux
response (Φ)34 of reaction 4 to a perturbation of reaction 3 reads:

(Φ)34 =
∑4∈J/∋3(ϕJ)34

detSR
= − (ϕJ1)34 + (ϕJ2)34

(r2A − r1A)r4Br5C

=
−detSJ1∖4∪3∏m∈M rJ1(m)m − detSJ2∖4∪3∏m∈M rJ2(m)m

(r2A − r1A)r4Br5C

=
−1 ⋅∏m∈M rJ1(m)m − (−1) ⋅∏m∈M rJ2(m)m

(r2A − r1A)r4Br5C

= (r2A − r1A)r4Br5C
(r2A − r1A)r4Br5C

= 1.

(69)
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This concludes that (Φ)34 ≡ 1 has determinate sign, with no dependence at all on reaction
rates parameters, even if the Jacobian detSR is of indeterminate sign.

5.4. Subnetwork patterns. di

The results of this paper draw attention to certain subnetworks associated to Extended
Child Selections J ∪ j∗, for j∗ /∈ J, whose associated matrix SJ∪j∗ has a 1-dim kernel. It
is of great importance, then, to easily identify such relevant subnetworks.

Consider firstly Child Selections J such that

(70) detSJ ≠ 0.

Condition (70) can be characterized on a network level [23]. Then, for j∗ /∈ J,

(71) dim kerSJ∪j∗ = 1.

On the other hand, we lack network characterizations of Child Selections J such that

(72) detSJ = 0, with dim kerSJ = 1,

which is an obvious necessary condition for

(73) dim kerSJ∪j∗ = 1 with j∗ /∈ J.

One attractive possibility to detect such zero-behaving Child Selections with 1-dim ker-
nels might be to have atomic patterns, in the following sense. Let us assume that we
consider only a small, ‘atomic’, part Γatm of a network Γ; for example, a reversible re-
action from metabolite A to metabolite B.

(74) Satm =
1 2

[ ]A −1 1
B 1 −1

,

Above, Satm is the stoichiometric matrix of the subnetwork Γatm. Note, in particular,
that dim(kerSatm) = 1. Let S be the stoichiometric matrix of the whole network Γ.
Under our standing nondegeneracy assumption detSR ≠ 0, for the whole network Γ,

Can we imply the existence of a Child Selection J for Γ,

such that J(A) = 1, J(B) = 2 and dim(kerSJ) = 1?
(75)

This question possibly has an affirmative answer for most biological networks, so that it
may still be a valid strategy in applications. However, on a purely mathematical basis
the answer to the question (75) is negative. We show this in the following network Γ.
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(76)

S =

f1 f2 1 2 3 4 5 6 7
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 0 −1 −1 1 0 1 0 0
B 1 0 0 1 −1 −1 −1 0 0
C 0 0 0 0 0 0 −1 1 −1
D 0 1 0 0 0 0 1 −1 0
E 0 0 0 0 0 1 0 0 −1

.

A positive kernel vector of S is r = (2r, r, r, r, r, r, r,2r, r)T , r ∈ R>0, hence the associated
dynamical system admits a positive equilibrium x̄ and the network suits our analysis.
Due to injectivity, there is only one nonzero-behaving Child Selection J̃, and the nonde-
generacy assumption detSR ≠ 0 holds. In fact, consider the Child Selection

(77) J̃ ∶= {J̃(A) = 1; J̃(B) = 4; J̃(C) = 5; J̃(D) = 6; J̃(E) = 7},
with associated nonsingular stoichiometric matrix

SJ̃ =

1 4 5 6 7
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 0 1 0 0
B 0 −1 −1 0 0
C 0 0 −1 1 −1
D 0 0 1 −1 0
E 0 1 0 0 −1

, detSJ̃ = 1,(78)

hence

detSR = detSJ̃ ∏
m∈M

rJ̃(m)m = ∏
m∈M

rJ̃(m)m ≠ 0.

Reactions 2 and 3 and their input metabolites A and B constitute a degenerate subnet-
work Γatm ⊂ Γ whose stoichiometric matrix Satm reads:

Satm =
2 3

[ ]A −1 1
B 1 −1

.(79)

We show that it is not possible to extend the Child Selection {Jatm(A) = 2, Jatm(B) = 3}
on Γatm to a Child Selection J23 on Γ such that dim(kerSJ23) = 1. Indeed, there is only
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one possible Child Selection J23 of Γ with 2,3 ∈ J23, that is:

(80) J23 ∶= {J23(A) = 2;J23(B) = 3;J23(C) = 5;J23(D) = 6;J23(E) = 7},
with associated stoichiometric matrix

SJ23 =

2 3 5 6 7
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A −1 1 1 0 0
B 1 −1 −1 0 0
C 0 0 −1 1 −1
D 0 0 1 −1 0
E 0 0 0 0 −1

,(81)

which possesses a 2-dimensional kernel, ker(SJ23) = span⟨v1, v2⟩ where v1 = (1,1,0,0,0)T
and v2 = (1,0,1,1,0)T .

6. Metabolite perturbation

It may be of interest for the reader a brief discussion on metabolite perturbation, rather
than reaction perturbation. This case is extendedly treated in a dedicated paper [21],
where more details can be found. This section is intended only as a brief overview on
the topic, with the aim of keeping this paper as self-contained as possible.
Within our setting, a natural possibility to include metabolite perturbations of equilibria
is the following perturbed equation (cf: (6)):

(82) 0 = Sr(x̄) + εem∗ .
Equation (82) perturbs the metabolite m∗ by adding a constant inflow to it. Such
perturbation has been considered for example by the ecology community [4, 5], with
the name of ‘press experiments’. Under the standing assumption detSR ≠ 0 and along
the lines of Section 3, we may investigate the response δxm

∗

m′ of the concentration of

the metabolite m′ and the response Φm∗

j′ of the flux of the reaction j′. We obtain the
following relations:

(83) δxm
∗

m′ = −((SR)−1em∗)m′ and Φm∗

j′ = −[R(SR)−1em∗]j′ .
Let p′ indicate m′ or j′, indistinctly. A nonzero response of p′ is called nonzero influence
of m∗ on p′ and indicated by

m∗ ↝ p′.
Note that the above equation can be interpreted as a reaction perturbation of an inflow
reaction to m∗. This is confirmed by the parallelism between responses (25), (26), and
(83). Thus, mathematically, this type of metabolite perturbation is a subcase of the more
general reaction perturbation. However, it is worth mentioning two counterintuitive
features of this case. Firstly, the response of m∗ may be zero upon a perturbation of
m∗ itself. That is, adding an ε-inflow to m∗, the new equilibrium may have the same
concentration of metabolite m∗, thus self-influence does not always happen:

m∗ /↝ m∗.

Secondly, transitivity of influence does not hold for this case of influence:

m1 ↝m2 ↝m3 /⇒ m1 ↝m3.
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The transitivity failure is not due to a discrepancy between reaction perturbation and
metabolite perturbation, of course: the failure is only due to the different algebraic
structure of the metabolite response δxm compared to the flux response Φj .
Explicit examples of both features can be found in [21] and we omit them here.

7. Discussion

We have addressed the sign of flux sensitivities to perturbations of the network compo-
nents and identified certain kernel vectors of the stoichiometric matrix, which encode
the signs. These kernel vectors are constructed by considering a Child Selection J and
a reaction j∗ such that j∗ /∈ J. Each Extended Child Selection (ECS) J ∪ j∗ identifies a

M × (M + 1) minor SJ∪j∗ of the stoichiometric matrix. When such minor has a 1-dim
kernel, its kernel is spanned by a single vector v ∈ RM+1,

kerSJ∪j∗ = span⟨v⟩.
These kernels v, which we have named ECS kernel vectors, are the precise network
structures encoding the signs of the responses, in the sense explained in Section 4.
Note that, for any matrix with 1-dim kernel, the support, i.e. nonzero entries, of any
nontrivial kernel vector is uniquely defined. This implies, trivially, that the support of
such kernel vectors does not properly contain the support of any other kernel vector.
Such property defines what in literature has been named elementary kernel vectors,
mathematically studied by Rockafellar [26]. Note also that to each ECS vector v we can
naturally associate a unique kernel vector vS ∈ RN of the full stoichiometric matrix S by
considering

(84) vSj =
⎧⎪⎪⎨⎪⎪⎩

vj if j ∈ J ∪ j∗,
0 otherwise.

In this sense, ECS vectors are in particular special elementary kernel vectors of the
stoichiometric matrix S. Interestingly, the importance of elementary kernel vectors of
the stoichiometric matrix in metabolic networks has already been noted. Important
concepts as elementary flux modes [27] and elementary flux vectors [28] have arisen in a
different metabolic context from the one treated in the present paper, with connections
yet to be investigated in detail.
In this paper we have not addressed computational issues related to computing such
ECS kernel vectors. The number of Child Selections nJ can be estimated:

(85) nJ ≤ ∏
m

nJ(m),

where nJ(m) is the number of reactions j of which m is an input metabolite. The in-
equality is due to the injectivity assumption in Definition 1, and the equality is thus
obtained only if no two metabolites m1 and m2 are input of a same reaction j; that is,
each reaction in the network possesses only one metabolite input, e.g. in monomolecular
networks. In particular, nJ grows exponentially with the number of the metabolites m.
However, an algorithm considering each Child Selection J and each reaction j∗ /∈ J may
not be the most efficient. In fact, as we found in Example 5.1, (59), to two different Child
Selections J1,J2, and a reaction j∗ /∈ J1,J2, may correspond the same single ECS kernel
vector. In other words, there may be much fewer ECS kernel vectors than Extended
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Child Selections. An efficient computing algorithm would be of great help in making the
results of the present paper more operative for daily analysis on real biological networks.

Example 5.1 presented a simple counterexample to sign-transitivity of influence. With
such result, the question of transitivity of influence in metabolic networks is answered.
We summarize it here, for sake of clarity. Firstly, we recall a positive result of [18] on
the topic:

Theorem 7.1 (Brehm-Fiedler). Let p1 and p2 be elements in a metabolic network, either
metabolites or reactions. Let j′ be any reaction and m′ one of its input metabolites.

(1) If p1 ↝m′ and j′ ↝ p2, then p1 ↝ p2.
(2) If p1 ↝ j′ and j′ ↝ p2, then p1 ↝ p2.

In [21], it is proven that the result 7.1 does not extend to the metabolite case. That is,

p1 ↝m′ and m′ ↝ p2, /⇒ p1 ↝ p2,

and the present paper shows that no sign-transitivity result hold. That is,

p1
+↝ p2

+↝ p3 /⇒ p1
+↝ p3,

or any other combination of sign. In conclusion, Theorem 7.1 covers all transitivity
properties and no more general result holds.

We started this paper with three questions: we discuss here answers. Theorem 4.2
indicates which reaction j∗ should be perturbed to achieve an influence on j′: at least one
of the ECS kernel vectors v associated to j∗ must have a nonzero j′-th entry, v′j ≠ 0. For
the control of the response sign, we must distinguish determinate or indeterminate sign.
If determinate, the sign of a response is robust: it is independent from the equilibrium
value x̄ and from any chosen kinetics. In particular, the sign is the same for all choices of
reaction rates. The only naive way to control a nonzero sign is changing the perturbation
itself. For instance, Section 4.1 describes the lucky case in which any Child Selection
maps a metabolite m∗ either to j∗ or j∗s , only: the flux-responses to a perturbation
of j∗ have always opposite sign to the responses to a perturbation of j∗s . Hence, for a
positive influence on the flux of j′, we may just choose between perturbing j∗ or j∗s .
Alternatively, we may consider a sign switch of the perturbation. Indeed, consider a
negative perturbation of ε̃ = −ε ≤ 0: by linearity, the responses to a ε̃-perturbation have
opposite sign of the responses to a ε-perturbation.

More interestingly, for a fixed perturbation, if a response (Φ)j
∗

j′ is of indeterminate sign,

different values of the reaction rates may produce different signs of (Φ)j
∗

j′ . In this sense,

the control of the response sign may be possible via a careful choice of the reaction rates,
alone. However, this does strongly depend on the class of nonlinearities r, the kinetics.
Metabolic networks are usually endowed with enzymatic kinetics as - for example -
Michaelis-Menten

(86) rj(x) = aj ∏
m∈M

⎛
⎝

xm
(1 + bmj xm)

⎞
⎠

sjm

,
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where sjm is the stoichiometric coefficient of metabolite m in the reaction j, and aj and
bmj are positive parameters. The reason for this choice is that the reactions appearing in
the network only describe relations between metabolites. However, also other chemicals
may be involved, in particular enzymes. The presence of enzymes is taken in account not
by the stoichiometry of the network but indeed by choosing enzymatic kinetics rather
than an elementary kinetics, such as mass action

(87) rj(x) = cj ∏
m∈M

xs
j
m
m ,

where again sjm is the stoichiometric coefficient of metabolite m in the reaction j, and cj
is one single positive parameter. A mathematical advantage of Michaelis-Menten over
mass action is the greater richness of parameters, as #inputs+1 parameters appear in
the rate of any reaction j, where #inputs indicates the number of input metabolites to
reaction j. This parametric richness has important consequences for the control of the
sign of the responses. In fact, in Michaelis-Menten (86), a careful choice of the positive
parameters aj and bmj enables us to consider, at any fixed equilibrium x̄, the derivatives

rjm(x̄) as free positive parameters, independent from each other and from the equilib-
rium x̄ itself. We refer again to [23] for an explicit computation of this mathematical
fact. For what concerns the present paper, in the case of a kinetics as parametrically
rich as Michaelis-Menten, there always exist choices of reaction rate parameters so that
a response of indeterminate sign can be controlled to be positive, negative, or zero. For
parametrically poorer kinetics, as mass action, this freedom is missing: only one single
parameter cj appears in the rate of each reaction j. Thus, for mass action, further
analysis must be performed to fully understand and possibly control the actual sign of
a response of indeterminate sign. A viable and valid strategy may be carefully choosing
also the equilibrium value x̄, oppositely to the approach presented in this paper, where
we have considered x̄ fixed. However, consider a metabolite m that is input to two
reactions j1 and j2. Clearly, an ‘equilibrium parameter’ x̄m may appear in both the
mathematical expressions of the derivatives rj1m and rj2m. Contrarily to our approach
then, if the equilibrium x̄ itself is treated as a parameter, we may not consider rj1m and
rj2m as parametrically independent, even in the Michaelis-Menten case. This indeed
requires further analysis, untouched by the present work.

Throughout the paper, we have assumed the nondegeneracy assumption (22)

detSR ≠ 0,

where SR is the Jacobian matrix of the system, which excludes left kernels (conserved
quantities) of the stoichiometric matrix S. We do not exclude that it may be mathe-
matically possible to relax (22) to include such case. We have not pursued this in the
present paper both to a greater mathematical clarity of the content and because the
assumption (22) already allows important examples in a metabolic context, due to the
omnipresence of outflows.
Based on the implicit function theorem, the present theory appears firstly as a local the-
ory, valid only for small perturbations. However, an interpolation argument proposed
in [18] lifts formula (30), and consequently these sensitivity results, to account also for
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large perturbations, in the case of zero-vs-nonzero response analysis. Of course, a fur-
ther assumption on the existence of an equilibrium of the largely perturbed system must
be added. Then the flux responses to a large perturbation follow the same algebraic
description as in the local case. In particular, the interpolation argument works iden-
tically also for the sign analysis presented in the present paper. However, carefulness
is strongly required here, as we can never choose the parameters independently from
the equilibrium, as it is possible locally for parametrically rich kinetics. This implies
that, if the sign of a response is determinate, i.e., not depending on parameters, then
the sign of the response does not depend on the amplitude of the perturbation. On the
contrary, in the case of a response of indeterminate sign, i.e., depending on parameters,
a positive response for a small perturbation may become a negative response for a large
perturbation, even for parametrically rich kinetics as Michaelis-Menten.

In applications, the system is often considered to have a unique stable equilibrium, for
any choice of reaction rates. Under the nondegeneracy assumption (22), this requires
that the Jacobian determinant detSR is of the determinate sign

(88) sign detSR = (−1)M ,
since all M eigenvalues have negative real part, or are purely imaginary complex conju-
gated pairs. Via expansion (28), i.e.,

detSR =∑
J

detSJ ⋅ ∏
m∈M

rJ(m)m,

it is easy to see that an obvious sufficient condition for (88) is that all Child Selections
are good, that is

β(J) = sign detSJ ≡ (−1)M , for any J.

In particular, trivially, sign detSR = β(J), for any J. For such special but relevant case,

we can express better the sign of the response (Φ)j
∗

j′ . Indeed, via (30) we have

(89) sign(Φ)j
∗

j′ =
sign(∑j∗/∈J∋j′(ϕJ)j

∗

j′ )
sign detSR

= β(J) sign( ∑
j∗/∈J∋j′

(ϕJ)j
∗

j′ ),

but, via (40), for each J, such that j∗ /∈ J ∋ j′,

(90) β(J) sign(ϕJ)j
∗

j′ = β(J)β(J) sign(vJ∗j∗ vJ
∗

j′ ) = sign(vJ∗j∗ vJ
∗

j′ ),

where the notation vJ
∗

indicates here the usual ECS kernel vector such that

SJ∪j∗vJ
∗ = 0.

Clearly, then, the response (Φ)j
∗

j′ is of indeterminate sign if and only if there are two

Child Selections J1 and J2, such that j∗ /∈ J1,J2, j
′ ∈ J1,J2, and the associated ECS

kernel vectors vJ
∗

1 and vJ
∗

1 are such that

(91) v
J∗1
j∗ v

J∗2
j′ < 0 < v

J∗2
j∗ v

J∗2
j′ .
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Interesting questions still arise in the much more challenging case of an indeterminate
sign Jacobian. On the one hand, we have showed in Example 5.3 that cancellations may
occur between the numerator and the denominator of

(Φ)j
∗

j′ =
∑j∗/∈J∋j′(ϕJ)j

∗

j′

detSR
,

so that an indeterminate sign of the Jacobian determinant does not a priori imply the
indeterminate sign of the responses. On the other hand, the example is artificially
constructed and this quite surprising feature may not often happen in real biological
networks. Addressing and characterizing in more detail network conditions leading to
such cancellations is of great interest for future work: if cancellations are excluded, the
sign of all responses undergoes a simultaneous switch at the zero of the Jacobian, at the
same bifurcation point of a possible saddle-node bifurcation, connecting the control of
the sign of the sensitivity responses to stability properties of the equilibrium.

8. Proofs

We start this section with the proof of Proposition 4.1.

Proof of Proposition 4.1. Preliminarily, note that ker(SJ∪j∗) ≠ ∅, since SJ∪j∗ is a M ×
(M + 1) matrix. Hence, the dimension of the kernel is either 1 or greater than 1.
Moreover, by Formula (31),

(92) (ϕJ)j
∗

j′ ≠ 0 ⇔ det(SJ∖j′∪j∗) ≠ 0.

Firstly, assume that dim(ker(SJ∪j∗)) > 1.

dim(ker(SJ∪j∗)) > 1 ⇒ ker(SJ∖j′∪j∗) ≠ ∅, for all j′∈ J

⇒ (ϕJ)j
∗

j′ = 0, for all j′∈ J.
(93)

Conversely, assume that dim(ker(SJ∪j∗)) = 1. We have

dim(ker(SJ∪j∗)) = 1 ⇒ rankSJ∪j∗ =M

⇒ ∃ det(SJ∖j′∪j∗) ≠ 0 ⇒ ∃ j′ such that (ϕJ)j
∗

j′ ≠ 0.
(94)

�

Proof of Theorem 4.2. The proof is based on a careful use of Cramer’s rule.

1) We prove that

(95) (ϕJ)j
∗

j′ ≠ 0 ⇔ vj′ ≠ 0.

The first step is to make the matrix SJ∪j∗ an invertible (M + 1)× (M + 1) matrix Nb by
adding in the (M + 1)-th row a proper row vector bT , that is

Nb ∶= [S
J∪j∗

bT
] .(96)
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Secondly, we compute:

[S
J∪j∗

bT
] ⋅ v = [ 0

⟨b, v⟩] .(97)

Above, 0 refers to the M -dimensional zero vector. Note that ⟨b, v⟩ ≠ 0, since Nb is
invertible. We now apply Cramer’s rule to the j′-th entry of v and find that

det(Nb) vj′ = det

1 ... j′ ... M + 1

[ ]SJ(m1) ... 0 ... Sj∗

bT1 ... ⟨b, v⟩ ... bTM+1

= −det

1 ... j′ ... M + 1

[ ]SJ(m1) ... Sj∗ ... 0
bT1 ... bTM+1 ... ⟨b, v⟩

= −⟨b, v⟩ detSJ∖j′∪j∗ .

(98)

The conclusion follows by noting that

(99) vj′ ≠ 0⇔ detSJ∖j′∪j∗ ≠ 0⇔ (ϕJ)j
∗

j′ ≠ 0.

2) Equality (98), in particular, holds for any two vj′1 , vj′2 ≠ 0, with j′1, j
′
2 ∈ J. We can

divide one equality by the other obtaining

(100)
vj′1
vj′2

= detSJ∖j′1∪j∗

detSJ∖j′2∪j∗
=

(ϕJ)j
∗

j′1

(ϕJ)j∗
j′2

.

Passing to the sign operator gives the desired equality. �

Proof of Theorem 4.3. Firstly, let us observe that, under the one-dimensional condition
kerSJ∪j∗ = span⟨v⟩, we have

(101) detSJ = 0 ⇔ vj∗ = 0.

1) Now, let us assume detSJ ≠ 0, i.e. vj∗ ≠ 0. By Cramer’s rule,

det(Nb) vj∗ = det

1 ... M + 1

[ ]SJ(m1) ... 0
bT1 ... ⟨b, v⟩

= ⟨b, v⟩detSJ.

(102)

Comparison of the equalities between (98) regarding vj′ and (102) regarding vj∗ implies:

(103)
vj′

vj∗
= −detSJ∖j′∪j∗

detSJ
.

Passing to the sign operator yields

(104) sign(vj′vj∗) = β(J) sign(ϕJ)j
∗

j′ .
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2) The case of (ϕJ)j
∗

j′ = 0 is trivially proven. Indeed, by Theorem 4.2 case (1),

(ϕJ)j
∗

j′ = 0⇔ vj′ = 0,

and thus (41) holds. Assume then (ϕJ)j
∗

j′ ≠ 0, and consider the (M +1)×(M +1) matrix

Nj′ ∶= [S
J∪j∗

eTj′
] ,(105)

where ej′ indicates the j′-th unit vector in RM+1. Note that

det(Nj′) = (−1)j′+M+1(−1)M−j′ det(SJ∖j′∪j∗) = −det(SJ∖j′∪j∗).(106)

Hence,

(107) 0 ≠ sign(ϕJ)j
∗

j′ = − sign det(SJ∖j′∪j∗) = sign det(Nj′).

To compute det(Nj′), we consider

det(Nj′) = det(NT
j′ ) = det [ (S

J)T ej′

(Sj∗)T 0
] .(108)

Let us consider ṽ ∈ RM such that kerSJ = span⟨ṽ⟩ and ṽj = vj , for any j = 1, ...,M .

Now, for square matrices, dim coker(SJ) = dim ker(SJ). Let us choose the vector κ ∈ RM

such that,

(109) ker(SJ)T = span⟨κ⟩,
and

(110) Ad(SJ) = ṽ ⋅ κT

Let us set κ̃ = (κ,0)T . Again:

NT
j′ ⋅ κ̃ = [ 0

⟨Sj∗ , κ⟩] .(111)

Let us pick an entry κi ≠ 0 and, one more time by Cramer’s, we obtain:

det(NT
j′ ) κi = det

i M + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

... 0 ... 0 1

... ... ... ...

... 0 ... 1j′ j′

... ... ... ...

... ⟨Sj∗ , κ⟩ ... 0 M + 1

= (−1)i+j′+1⟨Sj∗ , κ⟩ det(SJ)∨j
′

∨i .

(112)

Above, again, (SJ)∨j
′

∨i indicates the matrix with removed column j′ and row i.
Now, noting that

(113) (−1)i+j′ det(SJ)∨j
′

∨i = (AdSJ)j
′

i = vj′κi
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leads to the complete chain of equalities:

sign(ϕJ)j
∗

j′ = − sign det(SJ∖j′∪j∗) = sign det(Nj′) = sign det(Nj′
T )

= − sign(vj⟨Sj∗ , κ⟩),
(114)

which concludes our proof. �

Proof of Proposition 4.4. We have assumed that any Child Selection J contains either
j∗ or j∗s , as a child reaction of m∗.

Let us pick the influence of j∗ on any j′ ≠ j∗, j∗s . Via Formula (30):

detSR ⋅ rj∗m∗ ⋅ (Φ)j
∗

j′ = − ∑
j∗/∈J∋j′

detSJ∖j′∪j∗ ⋅ rj∗m∗ ⋅ ∏
m∈M

rJ(m)m

= + ∑
j∗s /∈J̃∋j′

detSJ̃∖j′∪j∗s ⋅ rj∗sm∗ ∏
m∈M

rJ̃(m)m

= − detSR ⋅ rj∗sm∗ ⋅ (Φ)j
∗

s
j′ .

(115)

To check the central step above, note that any Child Selection, which does not contain
j∗, must contain j∗s , the ‘twin sister’ of j∗. Hence, with only one column swap j∗ ↔ j∗s ,

the matrix SJ∖j′∪j∗ , for a Child Selection J /∋ j∗ becomes the matrix SJ̃∖j′∪j∗s for a Child
Selection J̃ /∋ j∗s . The step follows since the determinant is an alternating form.
Cases j∗ = j′ and j∗s = j′ follow analogously by considering Formula (42) instead. We
omit the computation here. �
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